The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates.
نویسندگان
چکیده
Development of biomedical titanium implants with high osteogenic ability for fast and good osseointegration under normal as well as osteoporotic conditions is hotly pursued. Strontium (Sr) loaded nanotubular structures (NT-Sr) that allow controlled and long-term Sr release are expected to yield favorable osteogenic effects and properties. NT-Sr structures with different tube diameters are fabricated by hydrothermal treatment of titania nanotubes formed at 10 and 40 V (NT10 and NT40). The loaded Sr amounts are regulated by the hydrothermal treatment time of 1 and 3 h (samples NT10-Sr1, NT10-Sr3, NT40-Sr1 and NT40-Sr3) in the Sr(OH)(2) solution. Long lasting and controllable Sr release is observed from the NT-Sr samples with no cytotoxicity. The samples NT10 and NT10-Sr have multiple nanocues, comprising bundles of nanotubes of less than or equal to 30 nm with bundle diameters between 100 and 400 nm separated by about 80 nm. Sr incorporation enhances proliferation of rat mesenchymal stem cells (MSCs) on the NT structure, especially NT10-Sr which promotes the spread of the MSCs into a polygonal osteoblastic shape. Both the NT and NT-Sr samples promote osteogenesis to varying degrees as indicated by gene expression and among the various samples, samples NT10-Sr3 and NT40-Sr significantly up-regulate the expressions of the osteogenesis related genes in the absence of an extra osteogenic agent. Samples NT10 and NT10-Sr generate big nodular alkaline phosphatase (ALP) products and induce extracellular matrix (ECM) mineralization, and the effects on NT10-Sr3 are most obvious due to the multiple scaled nanostructure and proper amount of incorporated Sr. In comparison, less ALP products and failure to induce ECM mineralization are observed from sample NT40-Sr, possibly due to cell function impairment by the uneven protein distribution. NT10-Sr3 which shows excellent osteogenic properties is very attractive and has large clinical potential.
منابع مشابه
Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants.
Development of strontium releasing implants capable of stimulating bone formation and inhibiting bone resorption is a desirable solution for curing osteoporosis. In this work, well-ordered SrTiO(3) nanotube arrays capable of Sr release at a slow rate and for a long time are successfully fabricated on titanium by simple hydrothermal treatment of anodized titania nanotubes. This surface architect...
متن کاملBiofunctional Sr- and Si-loaded titania nanotube coating of Ti surfaces by anodization-hydrothermal process
Background Two frequent problems associated with titanium (Ti) surfaces of bone/dental implants are their corrosion and lack of native tissue integration. Methods Here, we present an anodization-hydrothermal method for coating Ti surfaces with a layer of silicon (Si)- and strontium (Sr)-loaded titania nanotubes (TNs). The Ti surfaces coated with such a layer (Si-Sr-TNs) were characterized wit...
متن کاملInhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters
Titania nanotubes loaded with antibiotics can deliver a high concentration of antibiotics locally at a specific site, thereby providing a promising strategy to prevent implant-associated infections. In this study we have fabricated titania nanotubes with various diameters (80, 120, 160, and 200 nm) and 200 nm length via electrochemical anodization. These nanotubes were loaded with 2 mg of genta...
متن کاملOsteogenic activity of titanium surfaces with nanonetwork structures
BACKGROUND Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. METHODS In this study, we used NaO...
متن کاملFabricated Antibacterial and Bioactive Titania Nanotube Arrays Coating on the Surface of Titanium
By photic-assisted deposition, Ag nanoparticles were assembled on bioactive TiO2 nanotube arrays, which were fabricated by anodic oxidation in 0.5 wt% NH4F solution containing 0.5 wt% Na2HPO4. The samples were characterized by scanning electron mincroscope (SEM), X-ray diffraction (XRD). Germiculture experimentation was employed to testing samples’ antibacterial capability. An obvious antibacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2013